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Abstract. Qumtum dots are examples of nanostructures which are attracting much interest in 
the fields ofboth pure and applied physics. The smallest dots currently being fabricated contain 
N c 10 interacting electrons and have an effective dimensionality d Q 3. The meaurement and 
interpretotion of the energy spectra associated with such few-particle quantum dots represents 
a considerable experimental and theoretical challenge. The singleelectron confinement energy. 
the cyclotron energy for moderate magnetic fields and the elechun-eleeuon interaction energy 
can be of similar magnitude and may therefore be equally impottmt in determining the few- 
elechun energy levels. In addition the energy spectrum is likely to be strongly N dependent for 
such small N. Here we review the results to date for few-particle quantum dots ( N  c IO). W e  
discuss the extent to which theoretical predictions emerging from detailed numerical calculations 
can be reproduced using analytically solvable microscopic models. and the extent to which both 
are consistent with recent experimental results. 

1. Introduction 

In recent years there has been much excitement surrounding the possible applications 
of ultrasmall systems on the 10-1000 A length scale in the~areas of electronics and 
optoelectronics [l].~~Structures whose dimensions are of this length scale are often called 
nanostructures. The basic technological motivation is that smaller components should be 
faster and may also dissipate less heat. There are also the added features that at small 
enough length scales, quantum-mechanical effects will become important and that with few 
enough paaicles (e.g. N lo), the properties should be strongly N dependent. Apart 
from their potential use as novel devices, such systems ge interesting from a fundamental 
physics viewpoint. Recent advances in materials processing, electron and x-ray lithography 
have opened up the possibility of fabricating artificial nanostructures using a ‘top-down’ 
approach starting from a semiconductor heterostructure containing a quasi-two-dimensional 
electron gas [2-7]. Simultaneously, the present capability of mariipulating single atoms 
using an STM (scanning tunnelling microscope) combined with recent progress in molecular 
synthesis have opened up the possibility of constructing molecular-scale devices using a 
‘bottom-up’ approach. It has even been suggested that such molecular machinery could be 
self-assembling [SI. In addition there are many naturally occurring nanostructures such as 
C ~ O  buckyball, porous silicon tubules and a wide variety of biological structures. Interest in 
nanostructures has therefore spanned the fields of engineering, chemistry, materials science, 
molecular biolo,T and physics. 

Because of their finite size nanostructures contain a finite number of electrons. If the 
number of electrons is large, it is reasonable to expect that their electronic properties may be 
qualitatively described by appealing to known properties of the infinite ( N  + 00) electron 
gas. However for small numbers of electrons (e.g. N < 10) the electronic properties of 
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the system are likely to be strongly N dependent, particularly in the quantum-mechanical 
regime. The large variation in chemistry of the first few elements in the atomic periodic 
table suggests that this will be the case. Furthermore, according to the geometrical shape 
of the nanostructure, the confinement len-6 scales in the three spatial directions in the 
nanosmcture (Lx .  L, and L,) can be quite different. Within a simple particle-in-a-box 
picture the singleparticle energy-level spacing A E  - L”. , it ’ follows that for L, >> L,, L, 
the electrons will be stuck in the lowest y, z subbands hence freezing out the y, z degrees 
of freedom. The nanostructure is now quasi-one dimensional in that the electrons only have 
significant freedom along the x-direction. Similarly if L, - L, >> L, the nanostructure 
is quasi-two dimensional; if L, - L, - L, the nanostructure is quasi-three dimensional. 
The finite particle number N and reduced effective dimensionality d 6 3 in nanostructures 
opens up a new research area in the traditionally IargeN field of condensed-matter physics: 
the study of low-dimensional, few-body systems. 

In the field of semiconductor physics, nanostructures with confinement in all three 
directions represent a logical progression from quantum wells, where the electrons are free 
to move in two directions, and quantum wires, where the electrons can only move in one. 
Semiconductor nanostructures where the electrons have no free directions might reasonably 
therefore be called quantum boxes or quantum dots. The connotation is that the electron 
wavelength is of the same length scale as the confinement so that quantum effects are 
important. In practice, however, nanometre-scale semiconductor structures are often called 
quantum dots irrespective of whether they actually exhibit quantum-mechanical confinement 
effects or not. Given that the trend in the experimental semiconductor nanostructure 
field is toward ever smaller systems (and hence smaller N ) ,  and given that the quantum- 
mechanical, few-body problem has relevance for a wide range of both artificial and natural 
nanostructures, we will limit this review of quantum dots to systems containing relatively 
few particles ( N  < 10) and with wavefunction confinement in all three spatial directions, 
thereby exhibiting a discrete, few-body energy spectrum. This classification is consistent 
with the widely held view of quantum dots as ‘artificial atoms’ [7]. As discussed above, 
such quantum dots can be effectively one, two or three dimensional (i.e. d 6 3) according to 
the relative confinement lengths. The energy spectrum of the few-electron, semiconductor 
quantum dot is expected to be extremely rich since the single-electron confinement energy, 
the cyclotron energy for modest fields and the electron-electron interaction energy can all 
be of similar magnitude (typically a few millielectronvolts); none of the energy scales can 
a priori be thought of as a small perturbation. The energy spectrum is also likely to be 
strongly N dependent for N < 10. 

This review discusses the various experimental and theoretical results which have been 
obtained for the few-particle ( N  < lo), low-dimensional (d 6 3) quantum dot. Given 
the inherent difficulties related to experimental fabrication and investigation of quantum 
dots containing such few electrons, most work to date in the N < 10 regime has been 
theoretical. Consequently this review focuses on theoretical results, although connection to 
existing experimental data is made wherever possible. With the rapid progress in device 
fabrication techniques, it may become possible to experimentally test many of the theoretical 
predictions within the next few years. In fact the theoretical problem of N particles in d 
dimensions is of interest in its own right since it can serve as a cluster calculation for 
many-particle systems. Of particular interest is the investigation of small-N precursors of 
exotic many-body states such as fractional-quantum-Hall-effect (FQHE) states and Wigner 
solids. Given the rich phenomena that can occur in a two-dimensional electron gas, it is 
natural to expect related effects in a few-electron system such as a quantum dot. 

Most of the theoretical work to date on the energy spectra of few-electron quantum dots 



Quantum dots 967 

has been numerical and fairly computationally intensive. The results of these calculations 
have been reported for specific values of the dot parameters and/or N. In practice quantum 
dots can be fabricated with nominal parameters chosen from a wide range of possible 
values; in addition, there are uncertainties in the actual parameter values for a given dot 
sample (e.g. p the geometic lengths of the dot do not usually correspond to the confinement 
lengths). To aid in the interpretation of experimental data, it might therefore be useful 
to gain more insight into trends in behaviour of the N-electron energy spectrum at the 
possible expense of quantitative accuracy for a particular set of dot parameters. For 
example, it would be useful to  have approximate expressions for the N-particle energy 
spectrum from which characteristic features for a given N (i.e. a ‘fingerprint’) could be 
deduced. With this motivation, we will highlight throughout this review the extent to which 
the physics emerging from numerical calculations can be reproduced using analytically 
solvable microscopic model Hamiltonians. The latter provide closed-form expressions for 
the few-electron energy spectra as a function of the dot parameters, thereby providing insight 
into the complicated competition between the confinement, electron-electron-interaction and 
cyclotron energies. 

The paper is arranged as follows. Section 2 discusses the various fabrication techniques 
and experimental investigations of the few-electron quantum dot. Section 3 reviews the 
various theoretical approaches that have been reported. Section 4.1 discusses the quasi- 
one-dimensional quantum dot (IDQD) where L, >> L,, L,. Section 4.2 reviews results for 
quasi-two-dimensional quantum dots (ZDQD). Section 4.3 considers three-dimensional dots 
(3DQD). Finally section 5 discusses the properties of coupled, few-particle quantum dots. 

2. Experimental background 

Quantum dots have been fabricated using a variety of techniques. Several of these techniques 
centre around additional lateral confinement of a high-mobility, two-dimensional electron 
gas formed in a  semiconductor (e.g. GaAs) heterostructure [4]. One method of obtaining 
this lateral confinement uses a mask of resist material defined on top of the heterostructure; 
this resist is a polymer which is either sensitive to electrons or x-rays depending on the 
type of lithography which is then performed to define the dot. The dot structure can also 
be defined using the profile of the resist material as a mask for etching. Another method of 
obtaining lateral confinement in the two-dimensional electron gas is to lay down a metallic 
gate on top of the photoresist structure; when biased negatively the gate will deplete electrons 
underneath which are closest to it, thereby defining the dot [4]. Similarly, elktrodes defining 
the geometric size of the dot .can be placed directly on top of the heterostructure with a 
gate below [7]; varying the voltage on these electrodes defines the quantum-dot region in 
the two-dimensional electron gas immediately underneath [7]. In each case, the geometric 
size of the quantum-dot structure tends to be larger than the actual electrostatic confinement 
diameter felt by the electrons. Alternative methods of quantum dot fabrication include the 
natural foniation of microcrystallites from solution (e.g. CdS). For a detailed review of 
microcrystallites, we refer to [9]. There has also been a recent report of naturally~occurring 
semiconductor quantum dots at the interface in a quantum-well structure [IO]. In addition 
circular quantum-dot structures called quantum corrals have been constructed by positioning 
iron adatoms on a copper surface using an STM [ l l ] .  

There are a large number of publications reporting transport and optical measurements on 
semiconductor quantum dots (see, for example, [SI, [7] and [121-[22]). Much experimental 
work has focused on large-N dots (i.e. N > 20). In this regime, the energy required to 
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add an extra electron to the dot can, to a good approximation, be separated into a large 
classical charging energy Ec which includes the effects of electron-electron interactions 
on the dot, plus a smaller energy-level-spacing term AE reflecting the separation between 
single-electron confinement levels on the dot. Although this approximation fails to treat 
the electron-electron interaction and the single-electron confinement on the same quantum- 
mechanical footing, it works well for large dots ( N  > 20) since large N implies large 
electrostatic energy Ec but small AE since the dot diameter is also large. Transport 
phenomena through the quantum dot can then be described in terms of the so-called 
Coulomb-blockade model [Z]. For discussions of the success of this model and various 
extensions of it, we refer to [23] and [23]. We note that in this large-N regime the quantum 
dot is sometimes called a ‘Coulomb island’ [16]. 

So far relatively few groups claim to have probed the quantum dot energy spectrum in 
the few-electron regime ( N  < 10); we will discuss three examples to illustrate the various 
types of experimental technique available. Ashoori et al [25] mapped out the magnetic-field 
dependence of the ground-state energies E ( N )  of an isolated, N-electron GaAs quantum dot 
using single-electron capacitance. This technique exploits the feature that single electrons 
can tunnel back and forth between an electrode and a quantum dot (through a tunnel barrier) 
when the chemical potential of the electrcde becomes equal to the chemical potential of the 
dot; the chemical potential of the N-electron dot is equal to the energy required to add an 
extra electron to the dot, i.e. E ( N f 1 ) - E ( N ) .  The resulting charge induced on the opposite 
electrode by this movement is then measured using a sensitive transistor. This technique 
hence indirectly measures ground state energies E(N). A schematic diagram of their sample 
(taken from [25]) is shown in figure 1 together with the sample capacitance as a function of 
both magnetic field and gate bias for N < 10 (the gate-bias scale is converted to a vertical 
energy scale by division by a lever arm [25]). For N > 10 Ashoori et al found that a 
‘constant-interaction’ model could explain much of the data: this model is similar to the 
Coulomb-blockade model discussed above in that the electron-dectron interaction is treated 
as an additive constant to the single-electron energy, i.e. confinement and interaction effects 
are not treated on the same footing. However for N < 10 they found several deviations 
from this model. In particular they pointed out a bump (see figure 1) which did not appear 
for N = 1, but which was present for N > 2 producing a ripple-like effect with increasing 
N .  This feature will be further discussed in section 3.1. 

Meurer et a1 [26] used far-infrared spectroscopy to probe the few-electron quantum- 
dot energy spectrum. Their GaAs quantum dots were prepared by evaporating a gate 
electrode onto a photoresist structure which had been formed on top of a GaAdGaAlAs 
heterostructure. Altering the gate voltage changed the number of electrons on the dot. 
Their measured resonance frequencies depend only weakly on the electron number (i.e. gate 
voltage) which seems at first sight to contradict the idea that few-electron dots have strongly 
N-dependent energy spectra. As will be discussed in section 3, however, this simply implies 
that the quantum-dot confining potential is almost parabolic since the incident radiation then 
only excites centre-of-mass modes [26]. They integrated the absorption strength of their 
spectral lines to obtain the number of electrons present in the dot as a function of gate 
voltage. They concluded that they were seeing discrete charging of a quantum dot with 
one, two, three and four electrons. 

Su et a1 1271 measured resonant tunnelling through a few-electron quantum dot formed 
by additional lateral confinement in a double-barrier heterostructure. Their sample. was 
constructed so that one barrier, through which electrons tunnel either onto or from the dot, 
was thicker (i.e. less transparent) than the other. This allowed a partial separation of the 
effects of confinement and charging (the charging energy includes the electron-electron 
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Magnetic Field (Tesla) 
Figure 1. Experimental capacitance data of Ashoori et a1 [25] as a function of magnetic field 
and gate bias (energy). The white and black regions correspond to high and low capacitance 
respectively; the white lines provide an indirect measurement of the N-electron ground state 
energies 1251. Dashed line shows hwJ2. Numbers indicate number of electrons N on dot. 
Solid circles indicate bump which appears for N 2 2. Schematic diagram of sample also 
shown. (Figure adapted from [Z].) 

interaction on the dot). Under ‘positive-bias’ conditions (i.e. with the emitter barrier for 
tunnelling onto the dot less transparent than the collector barrier for tunnelling off of the 
dot) the current reflects resonant tunnelling of just one electron at a time through the dot. 
The current peaks can yield information on the energy levels associated with single-electron 
confinement. Under ‘negative-bias’ conditions (i.e. with the emitter barrier more transparent 
than the collector barrier) electrons accumulate in the dot leading to sharp steps in the 
tunnelling current associated with the energy required to put an extra electron on the dot. Su 
eta1 concluded that the energy required for adding one more electron onto an N-electron dot 
was fairly insensitive to N provided N > 3. More recently, Tewordt et ul [28] investigated 
single-electron tunnelling through ultrasmall double-barrier heterostructures with additional 
lateral confinement resulting from either the surface depletion potential, potential fluctuations 
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or single impurities. 
Quantum-dot samples are often labelled as ‘artificial atoms’ [7]. Such a description 

makes sense in that the quantum dot contains a fixed number of interacting charged particles 
in a confined spatial region; for example, a dot containing N = 2 electrons is referred to as 
quantum-dot helium [4]. It is worth bearing in mind however that, in complete contrast with 
an N-electron atom such as helium, no two samples of an N-electron quantum dot fabricated 
from a semiconductor heterostmcture can ever have exactly the same confining potential. 
Strictly speaking, therefore, no experimental result obtained from a given quantum-dot 
‘atom’ can therefore be exactly reproduced in a different sample of the same ‘atom’. This 
inherent sample dependence in atomic (dot) properties further motivates our approach in this 
review of highlighting trends in quantum-dot behaviour via analytically solvable models. 

3. Theoretical background 

This section discusses the various reported approaches for calculating the N-electron 
energy spectrum in a d-dimensional quantum dot. As discussed above, we will only 
consider theories of the microscopic, quantum-mechanical N-electron system which treat the 
electron-electron interaction on a similar quantum-mechanical footing to the kinetic energy 
of confinement. We will not therefore discuss semiclassical hydrodynamical models based 
on phenomenological Hamiltonians for large N, nor will we further consider Coulomb- 
blockade or constant-elecuon-electron-interaction models. 

The few-electron quantum dot represents an interesting challenge to theorists since 
it marks a departure from the typical many-electron systems studied in low-dimensional 
semiconductor physics in the past few decades. Systems such as quantum wells and 
wires are strictly not nanostructures since they still have at least one free direction; the 
energy spectrum therefore comprises bands of allowed energies as in a bulk semiconductor. 
Such structures can in principle contain an infinite number of electrons and it only makes 
sense to talk about an electron density. Many-body effects can hence be calculated with 
some confidence using traditional mean-field (i.e. large-N) theories which have been used 
successfully in bulk semiconductors. Corrections due to electron-electron correlations can 
be expressed as a perturbative series in powers of 1/N. Such approaches are likely to be 
suspect for quantum dots when N is small. It might appear that the correct description 
of a quantum dot could alternatively be imported from the formalism of atomic physics. 
However this may also be problematic. The two competing energy scales are the kinetic 
energy of the particles (which scales as the inverse square of the confinement length) and the 
electron-electron interaction energy (which scales as the inverse of the electron separation 
for a Coulomb interaction). In systems such as atoms where the confinement-length scale is 
small, the kinetic energy tends to dominate. Perturbative treatments of the electron-electron 
energy starting from a shell model are therefore reasonable and have had much success for 
atoms. Such a simplification for the mesoscopic regime of quantum dots is not generally 
possible since the kinetic energy and potential energy are typically comparable [29], both 
being of the order of a few millielectronvolts. A further complication is that even moderate 
magnetic and electric fields will introduce perturbations of this order and hence should 
be treated on an equal footing. In general, quantum dots represent interacting, few-body 
systems with a response to external fields which may lie beyond linear-response theory. 

The governing equation for the energy spectrum of an isolated quantum dot is the N- 
particle non-relativistic Schrodinger equation. In principle this should include one-body 
terms such as the underlying periodic crystal potential and two-body electron-electron 
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interactions. However most experimental work has been carried out on quantum dots built 
from wide-band-gap semiconductors where the electron energies are small compared to the 
band gap, hence non-parabolicity effects (i.e. energy-dependent conduction-band effective 
mass and band-edge mixing) can be neglected. To our knowledge, all theoretical work 
aimed at calculating N-electron energies makes the effective-mass approximation for the 
electrons; generalization to few-electron dots made from HgCdTe, for example, is an open 
problem. Within the effective-mass approximation, the exact Schrodinger equation for N 
particles in a d-dimensional quantum dot having confining potential V,(T) and an external 
magnetic field B along the z-axis, is given by HY = EY with H = Hspace + Hspi.; Hspace 
and Hspin depend only on spatial and spin coordinates respectively [30]. Explicitly, 

where the momentum and vector potential associated with the ith particle are given by p; 
and A; respectively, and pg is the Bohr magneton. The particles have g-factor g*, spatial 
coordinates {TL]  and spin components along the z-axis. The eigenstates of H can be 
written in terms of products of spatial and spin eigenstates obtained from Hspace and Hspin 
respectively. The z-component of total spin SZ is equal to E, si,* and represents a good 
quantum number for the system. We have assumed the electron-electron interaction to be 
translationally invariant. This is not a priori hue due to the presence of image charges in 
the surrounding dielectric materials and gates. However all theoretical work to date has 
ignored this complication. 

Before turning to treatments of the exact Schrodinger equation, it is worth commenting 
on possible forms for the onebody confinement Vc(ri) and two-body interaction V , ( T ~  - ~ j ) .  

Given the wide variety of confining potentials which could be used as input to a model 
calculation and the inherent difficulties in solving an N-body problem, it would be 
extremely difficult to explore the wide range of possible energy spectra for comparison 
with experimental data. Fortunately there is a result which gives direct information about 
the approximate form of Vc(r;). Kohn’s theorem 1311 states that the cyclotron frequency 
in a translationally invariant eIectron system is independent of the electron density and 
of the form of the electron-electron interaction V , ( T ~  - ~ j ) .  The theorem follows from 
the fact that the electric dipole of the radiation only couples to the centre of mass of 
the electrons, leaving the relative motion unchanged. This result has been generalized to 
parabolic quantum wells [32] and quantum dots where the confinement is parabolic 133- 
361. As mentioned earlier, recent far-infrared optical measurements on artificially fabricated 
semiconductor quantum dots have indeed found the absorption frequencies to be essentially 
independent of the number of electrons [4]; this implies that the bare confining potential 
is nearly parabolic. Such a parabolic confinement is consistent with simple electrostatic 
considerations. The two-body electron-electron interaction &(ri - rj) between electrons i 
and j would of course vary as jr; -rjl-’ in free space. However in quantum-dot structures, 
the form of V , ( T ~  - may be modified in a non-trivial way by the presence of image 
charges in adjacent layers and gates. Furthermore, the wavefunctions of electrons in two- 
(and one.) dimensional quantum dots have a small but finite extent in the remaining strongly 
confined directions. This results in a slight smearing of the electron charge, modifying the 
pure Coulomb t form appropriate to point charges. 
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3.1. Exact numerical calculations 

One approach is to try solving the N-particle Schrodinger equation H’P = E’P numerically. 
A basis set made up from products of single-particle states is employed, the matrix elements 
of H calculated and the resulting matrix diagonalized [33, 371. Given a powerful enough 
computer, this approach can in principle yield the exact result. The decision of how to 
truncate the resulting matrix (i.e. choosing a finite basis set) is crucial. The calculations are 
computationally intensive since the size of the matrix required for good accuracy increases 
rapidly with N ;  such calculations must trade off increasing electron number N with a 
reduced number of single-particle basis states. Since the resulting eigenvalues can be closely 
spaced in energy, the overall ground state may become difficult to predict for large N given 
the uncertainties introduced by the numerical procedure. One of the first few-electron studies 
was by Laughlin for N = 3 electrons in  a d = 2 parabolic potential in the presence of a 
magnetic field [38]. Laughlin was specifically interested in understanding the origin of the 
novel ground states giving rise to the FQHE in a two-dimensional electron gas. Since the 
FQHE had been observed at relatively large magnetic field, only single-particle states in the 
lowest spin-polarized Landau level were included in the basis. The calculations showed 
that the ground-state angular momentum J of the three electrons increased with magnetic 
field and followed a ‘magic-number’ sequence J = 3m where m is an integer. Girvin and 
Jach then carried out a numerical diagonalization for N = 3 , 4  and 5 electrons in d = 2 
dimensions [39]. Again since the motivation was the explanation of the FQHE, the single- 
particle basis states were limited to the lowest spin-polarized Landau level. They found that 
the ‘magic-number’ angular momenta for N electrons were separated by N units of angular 
momentum, a direct generalization of the N = 3 result mentioned above. Girvin and Jach 
[39] raised the point that these angular momenta J for N = 3, when converted to an effective 
filling factor using U = N(N - 1 ) / 2 J ,  yielded the sequence U = 1, 4, 3,  etc. and that 
unfortunately v = 112 had not been observed in FQHE measurements on the PDEG. Maksym 
and Chakraborty [33] presented a calculation for a d  = 2 parabolic dot with N = 3 , 4  spin- 
polarized electrons. They found ground-state angular momenta which followed the same 
sequence with increasing magnetic field and pointed out that these transitions in the ground 
state should show up in low-temperature magnetization measurements. By looking at the 
charge density distribution, such few-particle calculations show the emergence of what have 
been termed Wigner molecules which are finite-N precursors of Wigner crystals [40, 411. 
Maksym and Chakraborty subsequently generalized their calculations to account for non- 
spin-polarized electrons [42].  At low magnetic field the jumps in the ground-state angular 
momenta are accompanied by jumps in the total spin. Such behaviour is a direct consequence 
of the requirement that the total N-electron wavefunction be antisymmetric. A simplified 
version of this behaviour was also reported for quantum-dot helium (i.e. N = 2, d = 2); 
in this case the jumps in total spin can be labelled simply as ‘spin-singlet-spin-triplet’ 
transitions [43].  Angular-momentum jumps in quantum-dot helium are further discussed in 
section 4.2. 

Hawrylak and Pfannkuche reported similar ground-state transitions for small N [44] 
and Hawrylak subsequently proposed [45] an identification with various features seen in 
the data of Ashoori er al [25] discussed in section 2. Figure 2 (taken from [45])  compares 
the measured [25] and calculated energies for adding a third electron to an N = 2 quantum 
dot as a function of magnetic field. MacDonald and co-workers have reported a rich phase 
diagram of magic-number ground states for N = S, 6 electrons in a d  = 2 parabolic potential 
[46]. They used their calculations to propose the possibility of mesoscopic oscillations in 
the thermodynamic properties of an N-electron dot with a period which is a multiple of 
the period for free electrons [47].  All of these numerical calculations take the form of 
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Figure 2. Numerical cdculation of Hawylak (solid line [45]) for energy to add a third electron 
to an N = 2 electron dot (labelled ‘charging energy‘) compared to the measured values of 
Ashoori et al (solid circles [2514otted line is a guide). The energy has E(N = I) subtracted 
( ( E ( 3 )  - E ( 2 ) )  - E ( ] ) ) .  Size of circle shows experimental error. Letters A. 6,  C and D 
correspond to spin and angular-momentum ground-state transitions in the N = 2 and N = 3 
electron dot [45]. D is mostly due to the angularmomentum ground-state h s i t i o n  I - 3 in 
the N = 2 electron dot which is further discussed in section 4.2. (Figure taken from [45].) 

the electron-dectron interaction to be the bare Coulomb form. Kinaret et a1 have shown 
numerically that quantitatively similar results follow if one assumes the electron-electron 
interaction to be of inverse-square form [48]. This fa? of the electron4ectron interaction 
is discussed further in section 4. 

There have been numerical calculations in other geometries. The first was by Bryant 
[49]  for^ N = 2 electrons in a d = 2 rectangular box with infinite-potential walls and zero 
magnetic field. Br&t investigated the interplay of~the  kinetic^ energy (- L-’) and the 
potential energy (- L-’) as a function of the size of the box L,. L,. He found the energy 
spectrum to depend strongly on the aspect ratio LJL,. For sufficiently large L the potential 
energy dominates and the possible precursor of a Wigner solid can be seen in both I D  
(L,  >> L,) and 2D (L,  - L,) limits (the ground state becomes degenerate). In section 4.1, 
we show the extent to which Bryant’s numerical results can be understood using analytically 
solvable models. Kramer and co-workers [50] have carried ont a numerical calculation.for 
N = 3 and 4 electrons in a rectangular box L, >> L,  (i.e. d ~ =  1) using a ‘pocket- 
state’ basis approach. This approach exploits the potential-energy minima associated with 
the classical N-electron configurations to introduce a finite set of approximate, localized 
basis functions for the N-electron system in configuration space; the Hamiltonian is then 
diagonalized within this basis [50]. Similar results are seen as for N = 2. For small L,  
the single-particle confinement energy dominates: the charge density of the ground state 
is essentially homogenous. As L, increases the potential energy begins to dominate and 
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the electrons form an inhomogenous charge distribution resembling a blurred version of the 
classical limit of equispaced point charges (Wigner molecule). Chui [51] also carried out 
a diagonalization for few electrons in a qUaSi-lD electron system. He found an energy gap 
at half-integer filling which may be related to the FQm fraction near half filling observed 
experimentally in one-dimensional ballistic constrictions [52]. 

3.2. Many-body perturbation theory 

For N 6 it becomes exceedingly difficult to perform a direct numerical diagonalization; 
for sufficiently large N, standard many-body techniques should prove useful for obtaining 
information about trends with increasing N. One of the first many-body perturbation 
calculations in a quantum dot was carried out by by Kumar et al [53] who employed 
the Hartree approximation for a realistic quantum-dot geometry. More recently Harttee 
calculations have been carried out for up to 30 electrons [54]. The accuracy of the Hartree 
and Hartree-Fock approximation for few-electron quantum dots has been investigated [55, 
561. It was found for N = 2 [55] that the Hartree approximation was inaccurate due 
to the unphysical self-energy corresponding to each electron interacting with itself. In 
the Hartree-Fock approximation this self-energy is cancelled by the exchange interaction; 
however, the results of Pfannkuche et al [S5] show that for small N ,  even the Hartree- 
Fock approximation can not be relied upon for accurate results due to neglect of correlation 
effects (i.e. its accuracy for a given magnetic field depends on the particular N = 2-electron 
ground state in question [ S I ) .  We will not continue discussion of many-body perturbation 
methods since we are explicitly interested in the small-N regime where the exact numerical 
diagonalizations of section 3.1 are more accurate. 

3.3. Analytically solvable models 

There have been two alternative approaches at investigating general features of few-electron 
quantum-dot energy spectra without resorting to detailed numerical calculations. The first 
involves the use of analytically solvable microscopic models for the N-electron interacting 
system. The resulting energy expressions directly display trends in the N-electron energy 
spectrum as a function of the dot parameters. The second, to be discussed in section 3.4, is 
a more abstract group-theoretical approach. Obviously the general N-electron Hamiltonian 
H cannot be solved exactly analytically. However using model confinement potentials and 
model electron4ectron interactions, exact analytical results can indeed be obtained for 
N 2. All such models to date exploit the fact that the approximate confinement potential 
in the actual samples seems to be well approximated by a parabolic potential as discussed 
earlier. In section 4 it will be shown that such analytically solvable models can often capture 
the basic physics emerging from the numerical calculations for few electrons. 

Taut [57] managed to obtain exact analytic results for N = 2 electrons interacting 
via a Coulomb interaction in d = 2 dimensions for specific values of the magnetic field 
and parabolic confining potential. Generalization to arbitrary magnetic field and/or N > 2 
with the Coulomb interaction is an open problem. As mentioned above Kinaret et al [48] 
have shown numerically that an inverse-square form of the electron-electron interaction 
ur-’ gives very similar results to the bare Coulomb form fir-’ in d = 2 dimensions. 
This inversesquare interaction resembles the dipole-like form used in [16] to allow for 
image charge effects. In [58] it was shown that the energy spectrum of N = 2 electrons 
interacting with the inverse-square interaction ar-’ in d = 2 dimensions is exactly solvable 
for arbitrary values of the magnetic field. The exact solution includes mixing with all Landau 
levels. The singlet-triplet transitions found for the Coulomb interaction [43] are reproduced 
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exactly using the inverse-square interaction. This result was subsequently extended to 
obtain approximate analytic results for N =- 2 (d = 2) [59]. For d = 1 dimension and 
zero magnetic field, the N-electron model with inverse-square interactions was solved by 
Calogero for any N 1601. This result has recently been used [61] to explain the periodic 
conductance oscillations observed experimentally i n  narrow ID quantum dots [7]. 

The only exactly solvable model known to us for N > 2 electrons in d =- 1 dimensions 
with a magnetic field is that of the harmonic interaction studied in [39] with a restriction 
to lowest-Landau-level basis states, and then subsequently solved exactly (i.e. including 
mixing with all Landau levels) [62]. This model [62] was subsequently used to calculate 
exciton energies in a quantum dot [63], to investigate the high-magnetic-field excitation 
spectrum of a quantum dot [64], to discuss Coulomb- and Pauli-blockade effects during 
resonant tunnelling through a quantum dot [651 and to predict dimensional instabilities in a 
three-dimensional anisotropic dot [661. 

3.4. Group theory 

The above-mentioned exact results for an N = 2 electron pair could in principle be used 
in a coupling procedure to tackle the N-electron problem. Such an approach already 
exists in nuclear physics via group theory. More generally. group-theoretic techniques 
borrowed from nuclear physics should prove useful in unravelling the energy spectrum 
of an quantum dot because of the analogy with N strongly interacting nucleons in a d- 
dimensional nucleus. In particular a parabolic (i.e. harmonic-oscillator) confining potential 
is often employed in nuclear physics. The properties of symmetry groups related to the 
harmonic oscillator have therefore been studied extensively [67]. The requirement that 
the total N-electron wavefunction be antisymmetric under the interchange of any two 
electrons places an additional symmetry Gtriction on the eigenstates of If; not all the 
mathematically allowed solutions of HY .= EY are necessarily physically allowed. Since 
there are only two possible values of the single electron spin, the symmetry of the spin 
configuration (i.e. the so-called spin partition) places a strong restriction on the allowed 
spatial configurations (spatial partitions). Given the. range of possible N values in a given 
quantum-dot experiment, it would be a significant advance if some ‘fingerprints’ could 
therefore be obtained whereby one would know that the Occurrence of a given multiplet 
of conduction peaks in the experimental data signalled that the quantum dot contained 
4 < N < 6 electrons, as opposed to 8 < N 6 10. The physical symmetries and state 
classification of an N-electron gas in a d-dimensional quantum dot were studied in [68] using 
the symplectic group framework. [69] took this approach one stage further by calculating 
analytically the energies of a class of N-electron algebraic Hamiltonians built from the 
symplectic group chain. Non-parabolicity and particle-particle interactions were simulated 
using quadratic Casimir operators. Previous calculations for non-parabolic quantum dots 
containing N interacting electrons [54,70] considered realistic microscopic perturbations to 
the N-electron Hamiltonian, and calculated numerically the shifts of the energy levels using 
perturbation theory. The Casimir operator approach provides approxime descriptions of 
actual perturbations and then gives the energy shifts exactly. Such an approach, while not 
common in condensed-matter physics, is well known in nuclear and molecular physics for 
describing rotational and vibrational band structures. 

4. Energy spectrum of a few-electron quantum dot 

We now explore the  extent to which the energy spectrum of a few-electron quantum dot 
can be understood using analytically solvable models, with a view to obtaining trends in 
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0 
increasing electron-electron 

interaction strength Q 
F i u r e  3. Analytical energy-level spectrum for N = 2 electrons in a d = 1-dimensional 
parabolic quantum dot for increasing values of the harmonic electron-electron interaction 
strength s2 ((a)-(d)). Energies are shown in units of hws with respect to the ground state. For 
each excitation energy level, the lengths of the thick (thin) lines represent the number of quanta 
of centre-of-mass- (relative-) mode excitation. The labellings in parentheses (P. S) denote the 
parity P (e =even. 0 =odd) and total spin S of each level for the purpose of comparison with 
Bryant's Coulomb calculation [49]. In (a), s2 = 0 while in (d), Sl = 2-1/2w (i.e. 41 = 0). 
Spectra (aHc)  are sualitativelr the same as for Bryant's numerical diaponalization calculations 
(figure 1 of [49]). 

electronic properties. We will tend to focus on quantum-dot helium ( N  = 2) since it is the 
simplest example of a dot containing interacting electrons [4]. The confining potential for 
the analytically solvable models is taken to be parabolic @WO),  hence the total energy can 
be written as E = ECM + E,! + ESpi, where ECM is the centre-of-mass energy, Erel is the 
relative-mode energy and Espin is the spin energy. The translationally invariant electron- 
electron interaction Vl(r) (r is the electron-electron separation) only affects the spectrum 
of E,] and hence the relative-coordinate wavefunction. The numerical results mentioned 
below employ the Coulomb interaction &(r)  = Br-'. The analytically solvable models in 
d dimensions are &(r)  = ur-' (inverse-square interaction) and K(r )  = dVo - im*Q2rZ 
(harmonic interaction) where a, VO and S2 are positive parameters. 

4.1. I D  quantum dot 

Most studies of a one-dimensional quantum dot (IDQD) consider zero external magnetic 
field, hence E,i. = 0. For one electron in a parabolic dot, the energy spectrum is trivially 

(3) 

where K is a positive integer or zero. This expression for the centre-of-mass spectrum 
EcM is valid for arbitrary N .  For N = 2 electrons the exact relative energy Erel for the 
inverse-square interaction is given by 

E = ECM = Rwo(K + 6) 

where s = (r + 4) with r = f ( l  + 4m*a/R2)'/'; k is a positive integer or zero. The exact 
relative energy for the harmonic interaction is given by 

E,~=Vo+fiQo(k+i)  (5 )  

where S2; = 
were calculated numerically in [49]. 

- 2Q'. Energies for N = 2 electrons in a IDQD with Coulomb interaction 
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Figure 3 shows the analytically obtained excitation spectrum for an N-= 2 lDQD with 
harmonic electron-electron interaction for increasing values of the interaction strength~Q. In 
figure 3(a) Q = 0 while in figure 3(d) Q = 2-’/2(00 (i.e. no = 0). The excitation energyfor 
a given K and k is shown as a line with a length proportional to K + k.  The centre-of-mass 
contribution is shown as a thick section of length K while the relative-mode contribution 
is a thin section of length k .  For odd (even) k ,  the spatial part of the wavefunction is 
antisymmetric (symmetric) and hence the spin part of the wavefunction must be symmetric 
(antisymmetric). The corresponding value of the spin S = 1 (S = 0) is also indicated in 
figure’ 3. The triplet (S = I )  levels are triply degenerate. The sequence of spectra shown 
in figure 3(a)-(d) is qualitatively the same if 0 is held constant while WO is reduced from 
WO >> Q (i.e. strong confinement) to WO = 2’/’Q. The sequences of energy levels shown 
in figure 3(a)-(c) are qualitatively the same as for Bryant’s exact numerical calculations 
(see figure 1 of [49]). Increasing the box length L in Bryant’s calculation comesponds to 
reducing WO since the characteristic oscillator length (i.e. effective box length) varies as 
w0 I”. This correspondence is remarkable since Bryant’s calculation was for two electrons 
confined in a narrow box with infinite potenfial walls as opposed to a harmonic confinement, 
and interacting via a Coulomb interaction as opposed to a harmonic interaction. The energy- 
level sequence therefore appears relatively insensitive to details of the onebody confinement 
or the two-body interaction. For large electron-electron interaction or small WO (i.e. large 
dot size), the harmonic interaction spectrum deviates from the Coulomb result; the electron- 
electron interaction no longer represents a small perturbation and hence its particular analytic 
form becomes important. In figure 3, all the relative-mode energy levels become degenerate 
as 00 approaches 2% (figure 3(d)). In the Coulomb spectrum of [49] only the lowest 
two levels are shown as becoming degenerate for large L. The degeneracies in both models 
suggest an instability of the system and a possible precursor to Wigner-solid formation [49]. 

the situation 
is differentin that any non-zero & immediately yields degeneracy of the lowest two levels 
with S = 0 and S = I. In [49] (and in figure 3(d)) this degeneracy was only reached in 
the large-L limit where the electron-electron interaction dominated the kinetic energy. The 
inverse-square interaction is singular and hence always behaves as a large perturbation to the 
system; it does not allow interchange of the two electrons for any finite oc ‘(the tunnelling 
barrier for interchange becomes inpenetrable). In the centre-of-mass frame the electron 
density falls exactly to zero as the two electrons approach each other: the system therefore 
has the character of a true Wigner solid and not just a charge-density wave. The relative 
mode energy spectrum has level spacing ZOO for all values of 01 (see equation (4)). 

For N > 2 electrons in a rectangular box, the numerical results of Kramer et a1 with a 
cut-off Coulomb interaction show a similar tendency to that of [49] for Wigner crystallization 
at sufficiently large box length [50]. The energy spectrum for N > 2 with a harmonic 
interaction is qualitatively similar to figure 3; the number of levels in a given multiplet will 
increase with N and the relative-mode energy spacing is now hQo - NQ2)”2. The 
instability within the harmonic-interaction model now occurs at a larger WO value (i.e. shorter 
box) given by N%2. The inverse-square model for N > 2, as for N = 2, is unstable 
to formation of an ordered electron chain and electron-electron interchange is forbidden 
for any non-zero 01. This model was first solved exactly by Calogero [60]. The exact 
N-electron energy levels are given by E ( N ;  K ,  k )  = E c M ( K )  + E,r(N; k )  with 

- 

For N = 2 electrons interacting via the inverse-square interaction 

E,,(N; k )  = fiwo(;(N - 1) + $ N ( N  - l)(r + f) + k ) .  (6) 

Note that k = 1 is not allowed. Although the Calogeromodel is strictly one dimensional, 
it still manages to explain qualitative features of the conductance peaks in measurements 
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of transport through narrow quantum dots whose lateral dimensions are small but non-zero 
[7]. Given that the quantum dot is weakly coupled to the reservoirs, the conductance-peak 
positions will directly depend on the N-electron spectrum of the isolated dot E ( N ;  K, k ) ;  
conductance peaks are expected when the kinetic energy of the incoming (N + 1) electron is 
equal to E(N + I ;  K’. k‘) - E(N; K ,  k).  For small tunnelling voltage bias applied along the 
length of the channel, the ground-state tunnelling process dominates (i.e. K = K‘, k = k’) 
and the exact spacing between conductance peaks calculated within the model is given 
by [61] 8 = Aw(t + 1); this N-independent form is consistent with the experimental 
findings [7]. The experimentally observed periodic conductance peaks have motivated 
the proposal of a single-electron transistor [7]. For strong electron-electron interaction, 
the peak spacing S --t (m*or)l’zwo and is independent of h ,  thereby making contact with 
classical Coulomb-blockade charging models. For larger tunnelling-voltage biases, excited- 
state tunnelling processes are possible (k # k‘ and/or K # K’) yielding a much smaller 
additional conductance-peak spacing S = fiwo which is again consistent with experiment 
(see figure 4 of [7]). 

There are a number of other exactly analytically solvable ID models based on inverse- 
square interactions which are often referred to as Sutherland models [71]. These differ 
from the Calogero model in that they have periodic boundary conditions and hence give 
fundamentally different N-electron energy spectra. In contrast to the Calogero model, 
they cannot reproduce the experimental observation of periodic conductance oscillations. 
Sutherland models prohibit edge states by imposing periodic boundary conditions; the 
Calogero model with its parabolic confining potential has the N-electron wavefunction 
and its derivative vanishing at infinity and every state becomes an edge state. Periodic 
boundary conditions are equivalent to taking the form of the inverse-square electron-electron 
interaction as (sin(x(xi -xj)/L))-’ ,  this being the interaction for two electrons on a ring of 
radius L/2x with x measured along the circumference. Such models are inappropriate for ID 
quantum dots weakly coupled to source and drain reservoirs; however they may prove useful 
for investigating electron-electron interaction effects in quantum rings (so-called quantum 
‘doughnuts’). Although the two types of model describe different physical situations, there 
are subtle connections between the two via the field of quantum chaology. In particular it 
has recently been shown [72] that the dynamical correlations in these quantum-mechanical 
models are related to spectral correlations in quantum chaotic systems. 

There has been a recent proposal of a crystal-like excitonic phase as the ground state 
of a ID system of singlet excitons (i.e. electron spin up and hole spin down) [73]. It would 
be interesting to investigate the analogy in a IDQD within the analytically solvable models 
discussed here. The solution for one electron and one hole with an inverse-square interaction 
(attraction) can be obtained from (4) by setting a + -a, and introducing a reduced m a s  
p. There is now a critical value of the electron-hole interaction parameter (YO = h2/8p. 
For a =- a0 the electron-hole pair (i.e. the exciton) cannot be formed, while for 0 c (Y < a0 
the electron-hole pair can become stable. 

4.2. ZD quantum dot 

The energy spectrum for N = 1 electron in a d = 2-dimensional parabolic potential with 
a perpendicular magnetic field has been extensively discussed in the literature [6, 741. The 
single-particle Schrodinger equation is easily solved in the symmetric gauge giving energy 
solutions E = Espace(n. m) + Espin where 
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where U@) = U: + u:/4 and n is a positive integer or zero. The angular momentum m 
can be any integer or zero. 

Consider the case of N = 2 electrons. The total energy E = E=&', m') + E,l(n, m)  + 
Espin. The exact relative energies E,&, m )  for the inverse-square interaction are given by 

E,( = f ro0 (~) (2n  + s + 1) - ;mho, (8 )  

where the relative angular momentum m is any integer or zero, n is any positive integer or 
zero and s = (m2 + m*u/h2)112. For the parabolic interaction 

E=I = 2Vo +fiS20(B)(2n + Iml + 1) - imfiw, (9) 

where a@) = w: + w:/4 - 2Q2. 

(0o:O.O~ 0 IO.VD.0) 0 lO.VD.01 0 

Coulomb Inverse-square Harmonic 
Figure 4. Theoretical energy-level spctrum for N = 2 electrons in a d = 2 dimensional 
parabolic quantum dot at zero magnetic field for various farms of the electron-electron 
interaction. Energies are shown in units of h w  with respect to the ground state. Expressions 
for the harmonic and inverse-square interaction levels are obtained analytically. The Coulomb 
spectrum is adapted from the numerical results of 17.51. Lengths of thick and thin lines represent 
the number of centrr-of-mass and relative quanta respectively, as for figure 3. Total spin S is 
indicated to the right of each level Labellings in paentheses (d, m'; n ,  m) denote cenue-of- 
mass- and relativemode quantum numbers for the purpose of comparison with the Coulomb 
result. 

We first discuss zero magnetic field for N = 2. The sequence of excitation energies 
for the three forms of the electron-electron interaction of interest is shown in figure 4. The 
sequence .of excitation energies for the Coulomb interaction is taken from the numerically 
obtained results of [75]. Analytic expressions for the energies with the inverse-square and 
harmonic interactions are easily obtained from E = ECM + E,(. For each excitation-energy 
level, the lengths of the thick and thin portions denote the number of quanta of cenue-of- 
mass- and relativemode excitation respectively. The corresponding quantum numbers are 
indicated in parentheses (n', m'; n, m); the total spin S is also indicated. The spectra for 
the Coulomb and inverse-square interactions are almost identical; the harmonic interaction 
is qualitatively similar. For both the inverse-square and harmonic interactions, there is an 
extra degeneracy in the higher-energy multiplet as compared with the Coulomb result. This 
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Figure 5. Schematic energy-level Structure for N = 2 electrons in ad = 2 dimensional parabolic 
quantum dot at moderate magnetic field (i.e. d = 0.  n = 0 for low-lying energy levels: elecwons 
are spin polarized) for harmonic a d  inversequare interactions. The energy-level spacing 
A = A' for the harmonic interaction. while A # A' for the invene-square interaction. Lengths 
of thick ond thin lines represent the number of centre-of-mass and relative angular-momentum 
quanta m' and m respectively. Energies are indicated in units of h(w(B) - %/2) with respect 
to the ground stxe. 

reflects extra hidden symmetries in the two-electron Hamiltonians with these interactions as 
compared with the Coulomb interaction, and partially explains their exact solvability. 

Figure S shows the N = 2 energy spectrum for the inverse-square and harmonic 
interactions at moderate magnetic field such that all the low-lying energy states correspond 
to n' = 0 and n = 0. The g*-factor is taken to be sufficiently large that the electrons are 
spin polarized. The ground state has m' = 0 and m = 1. The two forms of the interaction 
give qualitatively similar results: the excitation gap A = A' for the hamonic interaction, 
whereas A # A' for the inverse-square interaction. 

As the magnetic field increases further, the low-lying energy levels all have n' = 0, 
n = 0, m' = 0 and m > 0. Wagner et a1 [43] showed numericdly for the Coulomb 
interaction that the ground state undergoes transitions to progressively higher relative- 
angular-momentum m values (1 + 3 + S 4 . . . for a spin-polarized system due to the 
requirement of total wavefunction antisymmetry). At such large magnetic fields (large U,) 
the single-electron (i.e. non-interacting) energy-level spacings are small (h(wo(B) -w, /Z)  - 
hoi/w.). We might therefore expect the energy-level spectrum of the interacting electron 
system to depend more on the specific form of the electron-electson interaction since the 
interaction no longer represents a small perturbation. However it was shown analytically 
in [S8] that the inverse-square interaction yields an identical sequence of ground-state 
transitions to the Coulomb interaction with increasing magnetic field. Within this analytic 
model (i.e. equation (8)), these transitions can be understood as arising from the fact that E,, 
has a minimum at finite m =~mo where mo - (orm*/h2)'/2(oc/2w~) [S8] as shown in figure 
6. In contrast the harmonic interaction does not show such angular-momentum transitions 
of the ground state. This characteristic behaviour of the harmonic-interaction model is in 
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fact generic for any N and can be understood as follows. The dot of N electrons interacting 
with a harmonic interaction necessarily satisfies 00 z N'/*Q otherwise electrons would 
leave the dot. The ground state has the lowest possible angular momentum J consistent 
with the total wavefunction antisymmetry.'For spin-polarized electrons, J = N(N - 1)/2 
(the wavefunction has Vandermonde form) where J = 1 for N = 2. Consider the limit 
as 00 --f N'/*Q.  The excitations of purely relative character (see thin lines in figure 
5 for N = 2, and in [64] for N > 2) become degenerate with the ground state. For 
WO e N'/'Q, these excited states with higher J are lower in energy than the original 
ground state, i.e. higher-J modes have become soft. In fact, the higher the J value of 
the state, the lower the energy. The Nth electron therefore goes into an orbit with infinite 
radius (infinite J )  i.e. it leaves the dot. The dot now contains N - 1 electrons such that 
00 > (N - l ) ]k2.  Figure 7 summarizes this aifference in behaviour of the Coulomb 
and inverse-square interactions (figure ~7(a)) against the harmonic interaction (figure 7(b)) 
for a pair of electrons. The harmonic interaction therefore only gives results which are 
qualitatively similar to the Coulomb and inverse-square interactions in the limit of small 
electron-electron interaction strength (52) compared to the confinement (i.e. in the limit of 
large WO and hence small effective dot radius). This finding is consistent with that found for 
a IDQD (see figure 3). We note that for an anharmonic electron-electron interaction, this 
qualitative agreement can be restored. If one considers a (cut-off) Coulombic interaction as a 
Taylor series in the electron-electron separation i-. the harmonic-interaction model represents 
the exact results to order r2.  One can now treat the quartic term -r4 in perturbation theory. 
For large electron-electron separations, the quartic term will tend to dominate and bind the 
Nth electron at a large but finite radius yielding a high4 ground state, consistent with the 
Coulomb and inversesquare models. 

t 

0 5 
angularmamentum m 

Figure 6. 'Analytical relative-mode energy E(m) = E;l(n = 0 , m )  against relative angular 
momentum m (treated as continuous) for N = 2 elect" in a d = 2 parabolic dol h w  with 
an inverse-square interaction (solid line) at a fixed magnetic field U,. The same curve for lhe 
harmonic interaction is linear (dashed line) and has positive slope if R c 2-%,). 

For N > 2 electrons (d = 2) at low magnetic field, the energy spectra are expected 
to be strongly N dependent (cf. spectra of-atomic He, Li etc.). Unlike the inverse- 
square interaction, the harmonic interaction is still exactly analytically solvable. Given 
the qualitative agreement with the Coulomb interaction for N = 2 in the case where the 
electron-electron interaction is not too large a perturbation to the single-electron energies, 
it is reasonable to expect the harmonic interaction to be a realistic model for N > 3 for 
small dots (i.e. large WO). A true Coulomb interaction would simply produce some small 
additional degeneracy splittings of the harmonic-interaction-model energy spectrum, similar 
to those shown in figure 4. Figure 8 shows the analytically obtained spectra for N = 2 
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(quantum-dot helium) and N = 3 (quantum-dot lithium) with a harmonic interaction in a 
small dot (large 00) at low magnetic field. The strong N dependence of the spectra is 
striking. Such characteristic multiplet structures could act as ‘fingerprints’ for deducing 
the number N of electrons in a given dot from the conductance-peak structure obtained 
in transport measurements. We note that the harmonic-interaction model can be used to 
generate energy spectra for all N .  yielding a ‘periodic-table’ classification for quantum 
dots. 

3s.7 ... 
I 

Figure 7. Schemaric diagram showing the relative-mode energy E(m) (measured with respeet 
to E(m = 1)) for N = 2 spin-polarized electrons in a d = 2 parabolic dot as a function of 
increasing eiecfmn-electron interaction or decreasing dot confinement strength for (a) Coulomb 
and inversesquare interaction (i.e. increasing B and a or decreasing 00). and (b) harmonic 
interaction (i.e. increasing S l  or decreasing 00) at a given magnetic field. The ground-state m 
values are indicated beneath. 

For N > 3 electrons at large magnetic fields interacting via a Coulomb interaction, 
direct numerical diagonalization calculations have been carried ont by many groups as 
mentioned earlier. Transitions to ground states of increasing total angular momenta were 
found; such ‘magic’ J values are the N > 3 equivalent of the N = 2 values discussed 
above. As noted earlier the angular momenta of these ground states, when converted to 
effective filling factors, do not seem to yield a sequence which agrees with the observed 
FQHE values in the ZDEG [39]. The inverse-square interaction is no longer exactly solvable 
for N > 3; however it has recently been solved approximately using a simple pairing 
procedure [59]. Coincidentally, all the stable fractions U predicted by the model [59] 
have been observed experimentally in the ZDEG. The harmonic interaction is still exactly 
solvable for any N at any magnetic field. Within this model, it was shown [a] at high 
magnetic field that the excitation energies exhibit complex crossings as a function of the 
strength of the electron-electron interaction. A fundamental difference was found between 
the N = 2- and N > 2-electron excitation spectrum: the energy spectrum in figure 5 
gains some additional relative modes which are not possible for the N = 2 spectrum. 
The reason [64] is that for N = 2 all possible relative excitations have wavefunctions of 
Jastrow form while for N > 3 this is no longer the case. It is sometimes stated that the 
Laughlin wavefunction is an exact eigenstate of the N-electron problem including harmonic 
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Figure 8. Analytical energy spectra for N = 2 and N = 3 eleevons at low magnetic held in a 
d = 2 parabolic dot with a harmonic interaction. The spin splitting 8 = (g.m'/Zm~)ho,; the 
splitting 8' =A%.  The spacing A = h ( w ( B )  - %(E)) .  Total spin S for N = 2 is indicated. 
Enexies are shown in units of f i w ( B )  with resped to EO = Aw(B) + ( N  - I)hQr(B) + 
N(N - 1)Vo: EO represents the ground slate for N = 2 but is disallowed for N = 3 due to 
the Pauli principle. Lengths of thick and thin lines represent the number of centre-of-mass- and 
relative-mode quanta 

interactions; this is incorrect. The exact many-body wavefunctions for the excited states are 
generalizations of Laughlin wavefunctions [MI. The electron-electron interaction causes 
significant inier-landau level mixing of the singleelectron levels. As shown in figure 7(b) 
and discussed above, for a dot confinement potential weaker than the critical value N ' k 2 ,  
or alternatively above a critical value of the effective dot radius, the system with harmonic 
interactions becomes unstable to formation of ground states with arbitrarily high angular 
momenta. For a more realistic form of the electron-electron interaction, this instabitity 
manifests itself in the formation of fractional ground states with finite U c 1. In the 
language of the fractional quantum Hall effect (FQHE) the harmonic-interaction model is 
only realistic if the impurity potential represented by the dot (Tim) is strong enough as 
to break the FQHE, i.e. WO > N%2. The harmonic-interaction ground state hence has an 
effective filling factor U =~ 1, where U*= N ( N  - 1) /2J  [39]. In 1761 FQHE states were 
observed in large-diameter dots (4000 A) but not in small-diameter dots (2000 A). If the 
height of the confining potential is the same for the two samples, the effective WO for 
the 2000 A dot is  greater than for the 4000 A sample. An interpretation in terms of the 
harmonic-interaction model is hence that the 2000 A dot satisfies WO > N ' k  yielding 
v = 1, while the 4000 A dot satisfies 00 < N'12R yielding v c 1. [77] has numerically 
confirmed the fact that the h k o n i c  interaction and the Coulomb interaction do in fact give 
similar results for sufficiently small parabolic dots (i.e. sufficiently large W O ) .  

4.3. 3D quantum dot 

Because of the computational complexity, relatively little theoretical work has yet been 
performed on the effects of the electron-electron interaction in the case of three-dimensional 
dots (L, - L, - Lz) despite the fact that experimental work has already begun f781. 

For a three-dimensional isotropic parabolic dot without magnetic field, the N = 2 
problem is exactly solvable with the inverse-square interaction. The energy is given by 
E = EcM ~+ E d  where ECM is the energy of a single electron in a 3D parabolic potential 

ECM = frwo(2n' + 1' + 4) (10) 
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and 

where s = (1(1+ 1) + m*or/ii* + $)'p; 1' and I are the centre-of-mass and relative anguIar- 
momentum quantum numbers (P, I 2 0 and n', n > 0). Extension to finite magnetic fields 
and/or consideration of larger numbers of electrons is an open problem with the inverse 
square model. The only analytically solvable model for N electrons in a 3D dot so far is 
the harmonic-interaction model. Using this model, it was predicted [66] that the freedom of 
motion of the electrons in the third ( z )  direction could lead to dimensional instabilities in the 
quantum-dot electron gas resulting from the interplay of the electron-electron interaction, the 
Pauli exclusion principle, the single-particle confinement energy and the cyclotron energy. 

5. Energy spectrum of coupled quantum dots 

So far we have discussed the energy spectrum of an isolated quantum dot. It is natural 
to turn to consideration of coupled dots, particularly because future quantum-dot electronic 
devices may depend on such a coupling for the propagation of information. Coupling 
between two adjacent dots can be achieved in two ways. First, single-particle tunnelling 
can occur between the two dots. Alternatively the two-body electron-electron interaction 
can couple electrons in adjacent dots, even in the absence of any single-particle tunnelling. 
There have been a number of calculations of the collective modes of arrays of dots in the 
absence of interdot tunnelling. Kempa et al [79] assumed classical point-dipole interactions 
between the dots and showed that the system could undergo ferroelectric or antiferroelectric 
transitions. Dempsey et a1 [SO] carried out a calculation of polariton modes including 
retardation effects and generalized the Kohn theorem centre-of-mass absorption to such a 
dot array. Recently Stafford and Das Sarma [SI] have carried out an interesting calculation 
based on a Hubbard model of the energies of clusters of coupled quantum dots with interdot 
tunnelling included. Although such a model does not include the subtle dependences of 
the intradot electron-electron interaction on the magnetic field, it is able to predict a rich 
phase diagram. Chakraborty et al carried out a calculation for two parabolic dots lying 
alongside each other in the same plane [82]. They found that the interdot electron-electron 
interaction gives rise to anticrossing behaviour involving the two expected Kohn-theorem 
far-infrared absorption peaks (the interdot electron-electron interaction breaks the circular 
symmetry and mixes the centre-of-mass and relative modes of each dot). This anticrossing 
was found to be consistent with recent experimental data [82]. 

Tewordt et al have recently reported the experimental study of transport through two 
vertically coupled quantum dots [83] and Bryant has calculated energy spectra numerically 
in the absence of a magnetic field [84]. The two coupled 2D quantum dots lie in the ny 
plane but are separated from each other by a vertical distance s along the z-axis. Such a 
double-layer system could have interesting properties at large axial magnetic field in light 
of the recent experimental discovery in doublelayer electron systems of novel fractional- 
quantum-Hall-effect (FQHE) states at $ and : filling per layer [85]. In a double-layer system, 
the ground state should depend on both intralayer and interlayer correlations [86]. The 
exactly analytically solvable, inverse-square interaction model discussed earlier for N = 2 
electrons in a dot [58] can be extended to such a double-dot structure. With two electrons 
in each dot, the model becomes analytically solvable in the limit that the average electron- 
electron separation within the plane is smaller than the plane separation s, and the interlayer 
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tunnelling is neglected. Figure 9 shows the low-lying energy spectrum as a function of 
magnetic field for s = 391 A. The states are labelled as lmt, mb) where mt and mb are the 
relative angular momenta of the two electrons~in the top and bottom dots respectively. The 
energies are measured relative to the low-field ground state and successive ground states 
are labelled. Each state Im, m)  with m, =~mb = m (dashed lines in figure 9) is essentially 
just the product of two single-dot states (m increases with magnetic field due to the intradot 
ground-state transitions as discussed in section 4.2); these Im, m )  states show no significant 
interplane correlation and are essentially ‘pure’ (i.e. weak entanglement). The mixed states 
lm+2. m)-  (solid lines in figure 9) are a linear combination of equal amounts of I m f 2 ,  m)  
and [m,  m + 2) (i.e. strong entanglement) and show significant interlayer correlation; their 
corresponding charge distribution closely resembles, the classical electrostatic configuration 
for four electrons (the electrons -lie at the corners of a square when projected onto the 
xy plane). These mixed states show increasing interplane crystallization with increasing 
magnetic field and could represent precursors of a bilayer Wigner solid.’ A s increases (see 
inset in figure 9) the mixed states (dark regions in inset) become unstable. Eventually all 
ground states have the pure form m, = mb since the interplane correlation is too weak. 
Intriguingly, the corresponding sequence of effective ground-state filling factors from this 
few-electron model seems to be consistent with the experimental data [85] obtained in the 
large-N double-layer electron system [87]. 

11,1> 13,IX 13.3) 15,3>_ 
c_- I ~1-I-l 

Figure 9. Analytical energy-level specmm for two coupled (d = 2) dots each containing WO 
electrons interacting via the inverse-square interaction, 3s a function of magnetic field. The dots 
are parallel and separated v e t t i d y  by a distance s (s = 391 A as in [SI). Lowest-energy 
curve at a given B gives ground state. Energies are measured in kelvin relative to j 1. 1) (ground 
state at low magnetic field). Inset shows ranges of stability of the various ground states with 
increasing s. White regions are p u t  states 1tn.m) while dark regions are’ mixed (entangled) 
sIateSlm+Z,m)-.~ : . . - ,  

There has been much discussion of the possibilities that quantum dots offer as ultrasmall 
structures within the field of electronics. Jt is expected that coupled quantum dots could 
be particularly important in the fabrication of ultrasmall logic gates [88]. Lent and Tougaw 
have looked at possible geometries for such logic gates; they have proposed a fivedot 
structure which could form the basis of a cellular automaton [89]. Most suggestions in the 
literature have been made with conventional (i.e. classical) computing in mind. However a 
novel application of coupled-dot systems as quantum-mechanical logic gates in the newly 
formed field of ‘quantum computation’ [go] has recently been proposed [91, 921. Quantum 
computation aims to exploit the specific properties of quantum mechanics to carry out 
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computations; given the existence of interference and entanglement effects in quantum 
mechanics, there is the possibility of carrying out massively parallel computations when an 
appropriate state vector is allowed to evolve in time. Two adjacent dots coupled only by the 
electron-electron interaction (i.e. ‘optical wiring’) are excellent candidates for building such 
quantum logic gates; this is particularly true if each dot behaves as a two-level system since 
the resulting four-level quantum-dot ‘molecule; can be selectively (and reliably) switched 
between states using external laser pulses [SI]. One might expect a pair of ID quantum dots 
each containing a single electron would suffice. However the nearly parabolic confining 
potential in most fabricated quantum dots means that each dot has nearly equispaced energy 
levels in addition to spin degeneracy. This unfortunately will introduce errors (uncertainties) 
into the selective switching process. Two 2D dots each containing a single electron at zero 
magnetic field suffer from a similar problem in that each dot has nearly equispaced levels 
at both small and large magnetic fields. Given the rich structure of the energy levels in 
figure 9, and their lack of degeneracy, it seems that two electrons per ?D dot might be more 
suitable. In addition, the magnetic field provides an externally tunable parameter, enabling 
one to move between ‘pure’ and ‘entangled‘ ground states. 

Coupled quantum dots might also prove useful for shedding light on some fundamental 
questions of quantum mechanics. One example is the Fermi two-atom causality problem 
which, in dot language, relates to two adjacent dots with negligible interdot electron 
tunnelling. If at time f = 0 dot 1 is in an excited state but dot 2 is in the ground state, one 
can ask the question as to the time i taken for dot 2 to become excited. Originally Fermi 
had calculated that f 2 s/c where c is the speed of light and s is the dot-dot separation; 
this is consistent with the effects of retardation and hence relativity. However this result 
has recently been questioned [93]. Subtleties of state entanglement also lie behind other 
recent propositions such as quantum cryptography and teleportation. Possible realizations 
of such effects have generally been discussed in terms of photon states. We believe that 
coupled quantum dots could be good candidates for studying such phenomena in fermion 
systems. 

6. Conclusion 

In addition to the technological potential, the study of quantum dots has opened up the 
fascinating area of few-body quantum mechanics within the traditionally large-N field of 
condensed-matter physics. Unfortunately, it becomes increasingly difficult experimentally 
to obtain energy spectra for N-electron dots as N + 1 while theoretically the reverse is 
true. However, with improved experimental and theoretical techniques being developed, 
the next decade should provide a unique opportunity for experimental and theoretical 
collaboration in this small-N regime. In addition to large-scale numerical calculations, we 
feel that analytically solvable models of the type discussed here, with effective microscopic 
parameters that can account for many-body interactions, should prove useful in deducing 
trends in the large amount of experimental data that is expected to emerge. As a first step 
in this direction, we have highlighted the extent to which such analytic models can reliably 
reproduce the physics emerging from (exact) numerical calculations. 
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